Exam. Code : 103201
 Subject Code : 1305

B.A./B.Sc. Ist Semester PHYSICS

Paper-B (Electricity \& Magnetism)

Time Allowed-3 Hours]
[Maximum Marks-35
Note :-There are FIVE sections A, B, C, D \& E. Section A is compulsory. Attempt ONE question from each section. All questions carry equal marks.

SECTION-A

1. (a) What do you understand by solenoidal vector?
(b) What is meant by the term 'test charge' and 'source charge'?
(c) What is equipotential surface ? Can two equipotential surfaces interact?
(d) What is the significance of negative sign in the equation $\vec{E}=-\vec{\nabla} \cup$?
(e) What is the nature of current versus potential difference graph for ohmic and non-ohmic resistor ?
(f) What is gyromagnetic orbital ratio ?
(g) How can a magnet be demagnetised completely ? $7 \times 1=7$

SECTION-B

2. (a) State and prove Gauss's divergence theorem.
(b) A point charge $\mathrm{q}=17.7 \mu \mathrm{c}$ is located at the centre of cube of side 3 cm . Find the electric flux through the whole cube and each face of the cube.
$4+3$
3. (a) Define curl of a vector field. Give its physical interpretation.
(b) Determine the relation between Coulomb and Statcoulomb.
$4+3$

SECTION-C

4. (a) Find the electric potential at a point due to a point charge at the origin.
(b) If the electric potential in a region is represented by $V=2 x+3 y-4 z$, obtain the expressions for potential gradient and electric field strength.

$$
4+3
$$

5. (a) Prove that electric potential at a point due to a dipole varies inversely as the square of the distance of the point from the dipole.
(b) Establish relation between Volt and Stat-Volt.

42(2116)/RRA-8058

SECTION-D

6. (a) Define the terms current and current density. Derive the relation between current density and drift velocity.
(b) A copper wire carrying current of 2 A has area of cross section $0.01 \mathrm{~cm}^{2}$. If the number of free electrons in copper is $8.0 \times 10^{28} / \mathrm{m}^{3}$, calculate the drift velocity of electrons. $5+2$
7. (a) What is meant by invariance of charge ? Give evidence in support of the same.
(b) Prove that $|\vec{J}|=\sigma|\vec{E}|$ is equivalent to the Ohm's law.
$5+2$

SECTION-E

8. Show that transformation laws for transforming electric field from one inertial frame of reference to another
are given by $E_{11}^{\prime}=E_{11}, E_{\perp}^{\prime}=r E \perp$ where $r=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
9. (a) Define intensity of magnetisation and magnetic induction.

Prove that $\mathrm{B}=\mu_{0}(\mathrm{H}+\mathrm{M})$ and $\mu_{\mathrm{r}}=\left(1+\chi_{\mathrm{m}}\right)$
where symbols have their usual meanings.
(b) What are free and bound currents ? Establish a relation $\vec{\nabla} \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{f}$ $4+3$

